​微合金钢(5-5)_必利劲能医保吗

  • A+
所属分类:医学快讯
摘要

Microalloyed steels(5-5) 微合金钢(5-5) 18 概述 自从Beiser[24]首次出版物的56年来,由于Nb钢带来的知识引起世界的关注,进行了大量研发工作,添加0.03%的Nb可以将低碳钢的屈服强度从250MPa提高到400MPa,控制轧制技术的采用更加提高了强度水平,在焊接

分享 ▏【9月精品单曲】芭比 精选EDM HOUSE 1.5G

歌单: 1B - 126 - Alex Stavi - Baila Morena (Original Mix) 2A - 120 - DJ Pantelis - Kou Sha Sha (Original Mix) 3A - 126 - Selena Gomez - Kill Em With Kindness (Carlos Mojica Remix) 3A - 128 - Jauz And Ghastly - Ghosts N Sharks 4A - 125 - Ba

Microalloyed steels(5-5

微合金钢(5-5

18 概述

自从Beiser[24]首次出版物的56年来,由于Nb钢带来的知识引起世界的关注,进行了大量研发工作,添加0.03%Nb可以将低碳钢的屈服强度从250MPa提高到400MPa,控制轧制技术的采用更加提高了强度水平,在焊接用钢上取得良好的韧性,另外,在1970年代实验室的工作就知道采用加速冷却和修改钢的成分来生产贝氏体和针状铁素体,其强度水平超过600MPa,从那时起,管线钢和汽车用钢需要高强高韧的薄钢板就是两个典型运用实例,将其科研成果转化为实际大工业生产。使用NbVTi微合金元素组合,有时候采用较高N含量现在工业已普遍采用。由于摩擦搅拌焊的出现,薄板坯直接轧制的微合金钢得到广泛运用。10多年前,从根本上认识到微观组织对改善性能的作用,且成本并不增加,电子显微镜和其它发展起来的分析仪器设备,以及友好的软件系统使得能够快速分析得到详细的有关微合金的信息,现在针状铁素体微合金钢已经大量生产,可以预见在将来微合金持续发展,不仅仅经济便宜而且可以按工艺路线组织生产达到特定的性能,这将对薄板坯连铸连轧生产带来良好的影响,采用针对性的加热和轧制工艺来生产摩擦焊连接钢,在SZ区域是非常不均匀组织结构,特别是对厚板的焊接需采用双向搅拌头同时焊接。


19  后记

作者从事微合金钢生产50年,和该领域中做过许多贡献的学者共事。开始在HinxtonHall 圆形橡木钢厂钢管研究实验室,当时10mm厚钢板的屈服强度只有不到400MPa。我从谢菲尔德大学研究生毕业,E.O.Hall教我物理学,J.H.WoodheadR.W.K.Honeycombe教授冶金学,后者后来邀请我写微合金钢综述(参考文献1),我也参加了他70岁生日庆典,60年代中期在Colvilles钢厂我遇到W.B.Morrison,之前访问联合钢厂Swinden实验室和T.Gladman教授和F.B.Pickering教授商讨有关AlN析出问题,D.W.Pashley教授教我SAED指数,J.W.Menter爵士向我介绍TEM技术,N.J.Petch教授参加1970年代Strachclyde大学冶金系,我们之间进行很多次讨论并且成为好朋友。N.A.McPherson博士毕业后参加我的团队,还有N.Gao博士、K.He博士和Y.Li博士作为博士后在团队继续研究,我们团队所有人得益于与Glasgow大学A.J.Craven教授在PEELS纳米分析中共同研究。

唐杰民翻译文章有感

 我是不才之人,退休下来还是不甘寂寞,仍然为上海亚新做一些事情,大的技术方面问题我仍旧帮助他们,有时候还是需要我出马解决现场问题的,但是今后现场的事情将少管了。

 

我从事的是工程技术工作对现场有一定情感,没有现场好像鱼儿离开了水,加上现在的技术发展很快,必须时常到现场看看冶炼、精炼、连铸和轧钢才能巩固自己那么一点点小知识。当然现场不从事设计了,有些东西都有点不够熟悉了,而且忘记很快,我还是这样认为的,好的工程师都是经历过失败、曲折的,只有通过这些才能锻炼和提高,离开现场多时,不可能具有很好的判断能力和解决问题能力的,我目前只是隔一段时间到现场看看,不至于陌生,如果这都不能坚持下去,我就自己淘汰自己,不去讲那些无用之语,对于工程师来说,不能解决实际问题就意味着真正老了,没有用处了。

 

现阶段如何缓慢渡过这个交接期,我没有什么本事,也就是在技术领域内多干了一些,在工程技术方面干的时间长,敏感性就多了一点,加上自己多年养成看书学习的习惯,一时半时不想扔掉技术书籍,给大家翻译文章当当二传手吧,同时也将自己那么一点点东西讲给大家听,所以经常在计算机上给大家讲解,只要自己知道的东东就一定倾心交代给大家,不懂坚决说不懂。

 

最近一个月翻译了英国学者Baker的《微合金钢》综述文章,这篇文章是我在上海图书馆看到复印回来,感觉很好,然后给作者写了邮件索要电子版,非常感谢Baker先生及时回应,给我这个电子版,所以能够很好的拷贝图表。

 

国内的学者对微合金钢做了大量工作,这篇综述文章里面也看到有一些中国学者的名字,说明改革开放之后才有钢铁工业的科研和生产春天,特别是近10年来科研迅速发展,为此感到由衷的高兴。我在第一时间购买了翁宇庆等著的《超细晶钢—钢的组织细化处理理论与控制技术》一书,和毛新平等人著的《薄板坯连铸连轧,微合金化技术》一书,不知道阅读多次了,好书在手如同好老师在眼前,真的感谢他们的高水平的研究和实践。

 

我为什么花费较大气力来翻译这篇文章?主要是微合金钢产量巨大,很多钢厂并没有大规模生产微合金钢钢材,但是今后是会走到这条路上来的。就是生产螺纹钢也是要走到微合金钢方向上来,这次新的螺纹钢标准颁布就是提高钢材的强度,也同时要求韧性,国内使用钒氮合金加入到钢中强化,现在也有使用铌铁来强化,但是轧钢工序总是有问题,主要是轧钢工序对铌在钢中的作用认识不足造成的。

 

我在无锡锡兴公司工作时,老板瞄准管坯钢市场,因而涉及微合金钢生产。我认为微合金钢使用量最大的首先是螺纹钢,其次是板材,第三位就是无缝钢管用钢了,20年前的无锡是钢管之乡,我涉及到大量这类钢材,用户拿到国外订单往往和我商量,来决定是否能够在冶炼上胜任,而且和用户一起商讨如何达到性能要求,这就涉及到微合金元素在钢中以什么样的方式析出,我具有从冶炼到轧钢方面的一些知识,虽然对无缝钢管不是非常精通,但是知道一些,自己也喜欢材料科学,所以在无锡锡兴公司当总工时和大家一起商量,充分利用自己学到的知识,生产了一些好的钢种,为企业生产这些微合金钢起到了一定的作用,特别是和老外和国内用户进行技术讨论时候,他们发现民企并不差的,对这些钢种是有所了解的,所以能够拿到一些订单。

 

虽然在无锡干的还行,生产的钢种没有出过大的纰漏,但是现在回过头来看,其实对微合金钢的认识还是有差距的。我其实是一个书虫,看到好的书和资料就马上购买过来,我也看了一些这方面的书籍。看到Baker写的《微合金钢》综述文章,总是爱不释手,后来决定翻译出来,翻译出来也是自己深入学习的机会,这样就会逐字逐句推敲来看,不懂之处就看书学习,请教万能网络,请教老师。用一个月的时间翻译出来,但是仍然感觉有的地方没有能够吃准,毕竟自己并非材料专业出身,金属材料方面的底子还是差了些,加上多年没有能够致力于轧钢生产,所以对形变热处理、形变诱导析出等方面的知识掌握是不够的,但是我是尽量理解,尽量少出错误。群内有很多专家对这些问题的理解一定比我好的多,文章翻译不够准确之处请大家给予指正,以便不断修改。

 

虽然这篇文章对于我来说难度是大了,但仍然坚持将其翻译出来,做一次系统性微合金钢学习。

 

我在大学的专业是轧钢,倒是近20年主要从事冶炼和连铸生产了,对轧钢不够熟悉了,肯定有的地方理解上不对或不妥,我翻译这篇文章也给轧钢同行看,请大家斧正,不必客气。

 

我是否烧包了,其实不然,并不是觉悟高,因为已经老了,不追究名利了,只要对祖国和大家有用,我将继续给大家当二传手。

 

最后祝大家身体好,生活快乐!
 
唐杰民2018107日晚写于无锡

 

参考文献

1. T. N. Baker: ‘Microalloyedsteels’, Sci. Prog., 1978, 65, 493–542.

2. T. N. Baker: ‘Microalloyedsteels’, in ‘Future developments of metals and ceramics’, (ed. J. A. Charles etal.), 75–119; 1992, London, Institute of Materials. Downloaded by [Universityof Strathclyde] at 04:47 30 March 2016

3. T. Gladman: ‘Microalloyedsteels’; 1997, London, Institute of Materials.

4. T. Gladman: ‘The physicalmetallurgy of microalloyed steels’, Mater. Sci. Technol., 1999, 15, 30–36.

5. W. B. Morrison: ‘Microalloysteels- the beginning’, Mater. Sci. Technol., 2009, 25, 1068–1073.

6. A. J. DeArdo:‘Metallurgical basis for thermomechanical processing of microalloyed steels’,Ironmaking Steelmaking, 2001, 28, 138–144.

7. S. Vervynckt, K. Verbeken,B. Lopez and J. J. Jonas: ‘Modern HSLA steels and role of non-recrystallisationtemperature’, Int. Mater. Rev., 2012, 57, 187–207.

8. A. J. DeArdo: ‘Niobium inmodern steels’, Int. Mater. Rev., 2003, 48, 371–402.

9. F. B. Pickering: ‘Overviewof titanium in microalloyed steels’, in ‘Titanium technology in microalloyedsteels’, (ed. T. N. Baker), 10–43; 1997, London, Institute of Materials.

10. R. Lagneborg, T. Siwecki,S. Zajac and B. Hutchinson: ‘The role of vanadium in microalloyed steels’,Scand. J. Metall., 1999, 28, 186–241.

11. R. Lagneborg, B.Hutchinson, T. Siwecki and S. Zajac: ‘The role of vanadium in microalloyedsteels’, Proc. Michael Korchynsky Symp., MS&T Conf., Pittsburgh, PA, USA,October 2014, Vanitec

12. T. N. Baker: ‘Processesmicrostructure and properties of vanadium microalloyed steels’, Mater. Sci.Technol., 2009, 25, 1083–1107.

13. T. N. Baker: ‘Role ofzirconium in microalloyed steels: a review’, Mater. Sci. Technol., 2015, 31,265–294.

14. F. G. Wilson and T.Gladman: ‘Aluminium nitride in steel’, Int. Mater. Rev., 1988, 33, 221–286.

15. ‘World Steel Productionreport’, August 2014.

16. ‘Total Materia’. Availableat: http://www.keytometals.

17. H. Xie, L.-X. Du, J. Huand R. D. K. Misra: ‘Microstructure and mechanical properties of a novel 1000MPa grade TMCP low carbon microalloyed steel with combination of high strengthand excellent toughness’, Mater. Sci. Eng. A, 2014, A612, 123–130.

18. http://en.wikipedia.org/wiki/Microalloyedsteel.

19. http://www.tatasteeleurope.com.

20. G. Oakes and K. C.Barraclough: ‘Steels’, in ‘The development of gas turbine materials’, (ed. G.W. Meetham), 31–61; 1981, London, Applied Science Publishers.

21. D. G. Robertson: ‘Traditionallow alloy steels in power plant’, in ‘Coal power plant materials and lifeassessment’, (ed. A. Shibli), 107–126; 2014, Cambridge, Woodhead Publishing.

22.http://www.metal.citic.com/iwcm/Rofes.pdf, Shanghai, November 2006.

23. D. K. Matlock, G. Kraussand J. G. Speer: ‘Microstructures and properties of direct-cooled microalloyforging steels’, J. Mater. Process. Technol., 2001, 117, 324–328.

24. C. A. Beiser: ‘The effectof small columbium additions to semi killed, medium carbon steels’, ASMPreprint No. 138; 1959, Metals Park, OH, ASM International.

25. A. L. Feild: ‘Some effectsof zirconium in steel’, Trans. Am. Inst. Mining Met. Eng., 1923, 69, 848–894.

26. A. L. Feild: ‘Effect ofzirconium on hot-rolling properties of highsulfur steels and the occurrence ofzirconium sulfide’, Trans. Am. Inst. Mining Met. Eng., 1924, 70, 201–223.

27. F. M. Becket: ‘Someeffects of zirconium in steel’, Trans. Am. Electrochem. Soc., 1923, 43,261–269.

28. W. B. Morrison: ‘Influenceof small niobium additions on properties of carbon-manganese steels’, J. IronSteel Inst., 1963, 201, 317–325.

29. W. B. Morrison and J. H.Woodhead: ‘Influence of small niobium additions on mechanical properties ofcommercial mild steels’, J. Iron Steel Inst., 1963, 201, 43–46.

30. E. O. Hall: ‘Thedeformation and ageing of mild steel.3 discussion of results’, Proc. Phys.Soc., 1951, B64B, 747–753.

31. N. J. Petch: ‘The cleavagestrength of polycrystals’, J. Iron Steel Inst., 1953, 174, 25–28.

32. A. H. Cottrell:‘Dislocations and plastic flow in crystals’; 1964, Oxford, Clarendon Press.

33. R. D. Heidenreich:‘Electron microscopy and diffraction study of metal crystal textures by meansof thin sections’, J. Appl. Phys., 1949, 20, 993–1010.

34. P. B. Hirsch, R. W. Horneand M. J. Whelan: ‘Direct observations of the arrangements and motion ofdislocations in aluminium’, Philos. Mag., 1956, 1, 677–684.

36. P. B. Hirsch: ‘Directobservations of moving dislocations: reflections’, Mater. Sci. Eng., 1986, 84,1–10.

35. P. B. Hirsch, A. Howie, R.B. Nicholson, D. W. Pashley and M. J. Whelan: ‘Electron microscopy of thincrystals’; 1971, London, Butterworths.

37. V. Randle: ‘Microtexturedetermination and its applications’, 2nd edn; 2008, London, Maney Publications.

38. R. Phillips and J. A.Chapman: ‘Influence of finish rolling temperature on mechanical properties ofsome commercial steels rolled to 13/16 in. diameter bars’, J. Iron Steel Inst.,1966, 204, 615

39. H. Matsubara, T. Osuka, I.Kozasu and K. Tsukada: ‘Optimization of metallurgical factors for theproduction of high strength, high toughness steel plate by controlled rolling’,Trans. Iron Steel Inst. Jpn., 1972, 12, 435–443.

40. I. Tamura, C. Ouchi, T.Tanaka and H. Sekine: ‘Thermomechanical processing of high strength low alloysteel’; 1988, London, Butterworths.

41. C. M. Sellars and J. A.Whiteman: ‘Recrystallization and grain growth in hot rolling’, Met. Sci., 1979,13, 187–194.

42. C. M. Sellars: ‘Thephysical metallurgy of hot rolling’, in ‘Hot working and forming processes’,(ed. C. M. Sellars and G. J. Davies), 3–15; 1990, London, Institute ofMaterials.

43. J. J. Jonas and C. M.Sellars: ‘Thermomechanical processing’, in ‘Future developments of metals andceramics’, (ed. J. A. Charles et al.), 147–177; 1992, London, Institute ofMaterials.

44. K. Hulka. www.cbmm.com.br. 45. D. C. Houghton, G. C. Weatherly and J. D. Embury: ‘Characterizationof carbonitrides in Ti bearing HSLA steels’, in ‘Thermomechanical processing ofmicroalloyed austenite’, (ed. A. J. Deardo et al.), 267–292; 1982,Warrendale,PA, Metallurgical

46. J. M. Gray, D. Webster andJ. H. Woodhead: ‘Precipitation in mild steels containing small additions ofniobium’, J. Iron Steel Inst., 1965, 203, 812–818.

47. J. W. Halley: ‘Grain-growthinhibitors in steel’, Trans. AIME, 1946, 167, 224–234.

48. D. Webster: ‘Effect ofprecipitates in grain refining microalloyed steels’, BISRA Report No.MG/C/18/62; 1962, Sheffield, BISRA.

49. K. J. Irvine, F. B.Pickering and T. Gladman: ‘Grain-refined C-Mn steels’, JISI, 1967, 205, Irvine,161–182.

50. D. V. Edmonds and R. W. K.Honeycombe: iron-based alloys’ ‘Precipitation Russell and H.> I. Aaronson),121–160; 1978, Warrendale, PA,

51. E. V. Pereloma, I. B.Timokhina, K. F. Miller and M. K. Russell: ‘Characterization of clusters andultrafine precipitates in Nbcontaining C-Mn-Si steels’, Scr. Mater., 2006, 54,471–476.

52. A. Deschamps, F. Danoix,F. De Geuser, T. Epicier, H. Leitner and M. Perez: ‘Low temperatureprecipitation kinetics of niobium nitride platelets in Fe’, Mater. Lett., 2011,65, 2265–2268.

53. F. Danoix, T. Epicier, F.Vurpillot and D. Blavette: ‘Atomic scale imaging and analysis of single layerGP zones in a model steel’, J. Mater. Sci., 2012, 47, 1567–1571.

54. G. Kostryzhev, A. AlShahrani,C. Zhu, J. M. Cairney, S. P. Ringer, C. R. Killmore and E. V. Pereloma: ‘Effectof niobium clustering and precipitation on strength of an NbTiBakerMicroalloyed steels 38 Ironmaking and Steelmaking 2016 –622. Publication, 1 95. – Metallurgical Society-AIME. ‘Precipitation in processes in solids’, (ed.K. C. Metallurgical Society-AIME. microalloyed ferritic steel’, Mater. Sci.Eng. A, 2014, A607, 226–235.

55. A. J. Breen, K. Y. Xie, M.P. Moody, B. Gault, H.-W. Yen, C. C. Wong, J. M. Cairney and S. P. Ringer:‘Resolving the morphology of niobium carbonitride nano-precipitates in steelusing atom probe tomography’, Microsc. Microanal., 2014, 20, 1100–1110.

56. E. V. Pereloma, A. G.Kostryzhev, A. AlShahrani, C. Zhu, J. M. Cairney, C. R. Killmore and S. P.Ringer: ‘Effect of austenite deformation temperature on Nb clustering andprecipitation in microalloyed steel’, Scr. Mater., 2014, 75, 74–77.

57. K. Y. Xie, T. Zheng, J. M.Cairney, H. Kaul, J. G. Williams, F. J. Barbaro, C. R. Killmore and S. P. Ringer:‘Strengthening from Nb-rich clusters in a Nb-microalloyed steel’, Scr. Mater.,2012, 66, 710–713.

58. Z.-G. Yang and M. Enomoto:‘Calculation of the interfacial energy of B1-type carbides and nitrides withaustenite’, Metall. Mater. Trans. A, 2001, 32A, 267–274.

59. Z.-G. Yang and M. Enomoto:‘Discrete lattice plane analysis of Baker-Nutting related B1 compound/ferriteinterfacial energy’, Mater. Sci. Eng. A, 2002, A332, 184–192.

60. R. G. Baker and J.Nutting: ‘The tempering of a Cr–Mo–V–W and a Mo–V steel in precipitationprocesses in steels’, Special Report 64, 1–22; 1959, London, Iron and Steel Institute.

61. W. B. Morrison: ‘Influenceof silver on structure and properties of low-carbon steel’, Mater. Sci.Technol., 1985, 1, 954–960.

62. D. P. Dunne: ‘Interactionof precipitation and phase transformation in low alloy steels’, Mater. Sci. Technol.,2010, 26, 410–420.

63. Proc. ‘Accelerated coolingof steel’, (ed. P. D. Southwick); 1986, Warrendale, PA, Metallurgical Societyof AIME.

64. G. E. Ruddle and A. F.Crawley: Proc. Int. Symp. On ‘Accelerated cooling of rolled steel’, 1st edn;1988, New York, Pergamon Press.

65. K. A. Taylor and S. W. F.B. Fletcher: ‘Physical metallurgy of direct-quenched steels’, in ‘Minerals,metals, materials society’ (ed.); 1993, Warrendale, PA, Thompson.

66. D. T. Llewellyn: ‘Steels:metallurgy and applications’, 73; 1992, Oxford, Butterworth-Heinemann, Ltd.

67. I. M. Mackenzie: ‘Notchductility of mild steel ship quality plate’, J. West Scotland Iron Steel Inst.,1952 1953, 60, 224–258.

68. I. M. Mackenzie: ‘Niobiumtreated carbon steels’, in ‘Metallurgical developments in carbon steels’,Special Report 81, 30–35; 1963, London, ISI.

69. R. W. Vanderbeck: Weld. J,1958, 37, 114S–116S.

70. I. Kozasu, T. Shimizu andH. Kubota: ‘Recrystallization of austenite of Si-Mn steels with minor elementsafter hot-rolling’, Trans. Iron Steel Inst. Jpn., 1971, 11, 367–375.

71. I. Kozasu, C. Ouchi, T.Sampei and T. Okita: ‘Hot rolling as high temperature thermomechnical process’,in ‘Microalloying ‘75’ 120–134; 1977, New York, Union Carbide Corporation.

72. H. Hanemann and K. Lu¨cke: ‘Rekristallisation nach warmverformung’, Stahl Eisen, 1925, 45, 1117.

73. R. Priestner, C. C. Earleyand J. H. Rendall: ‘Observations on behaviour of austenite during hot workingof some low-carbon steels’, JISI, 1968, 206, 1252–1262.

74. T. Tanaka, N. Tabata, T.Hatomura and C. Shiga: ‘Three stages of controlled-rolling process’, in‘Microalloying ‘75’,107–118;1977, New York, Union Carbide Corp.

75. S. Vervynckt: ‘Control ofnon-recrystallisation temperature in high strength low alloy (HSLA) steels’,PhD thesis, Ghent University, Ghent, Belgium, 2010.

76. H. Matsubara, T. Osuka, I.Kozasu and K. Tsukada: ‘Optimization of metallurgical factors for production ofhighstrength, high toughness steel plate by controlled rolling’, Trans. IronSteel Inst. Jpn., 1972, 12, 435–443.

77. Y. E. Smith and C. A.Siebert: ‘Continuous cooling transformation kinetics of thermomechanicallyworked lowcarbon austenite’, Met. Trans., 1971, 2, 1711–1725.

78. R. Priestner and E. delos: ‘Rios: Ferrite grain refinement by controlled rolling of low carbon andmicroalloyed steel’, Met. Technol., 1980, 7, 309–316.

79. A. J. DeArdo: ‘Acceleratedperspective’, Proc . Int. Symp. ‘Accelerated cooling of rolled steel’, (ed. G.E. Ruddle and A. F. York, Pergamon Press.

80. D. K. Matlock and J. G.Speer: ‘Microalloying concepts and applications in long products’, Mater. Sci.Technol., 2009, 25, 1118–1125.

81. K. A. Taylor: ‘Solubiltyproducts of titanium carbide, vanadium carbide and niobium carbide in ferrite’,Scr. Met. Mater., 1995, 32, 7–12.

82. W. C. Leslie, R. L.Rickett, C. L. Dodson and C. S. Walton: ‘Solution and precipitation ofaluminium nitride in relation to the structure of low carbon steels’, Trans.Am. Soc. Met., 1954, 46, 1470–1499.

83. K. Narita: ‘Physicalchemistry of group-IVA (Ti, Zr), group-VA (V, Nb, Ta) and rare earths insteel’, Trans. Iron Steel Inst. Jpn., 1975, 15, 145–152.

84. S. Matsuda and N. Okumura:‘Effects of distribution of TiN precipitate particles on austenite grain sizeof low-carbon steels’, Trans. Iron Steel Inst. Jpn., 1978, 18, 198–205.

85. R. K. Amin and F. B.Pickering: ‘Austenite grain coarsening and the effect of thermomechanicalprocessing of austenite recrystallization’, in ‘Thermomechanical processing of microalloyedaustenite’, (ed. A. J. DeArdo et al.), 1–30; 1982, Warrendale, PA,Metallurgical Society-AIME.

86. L. J. Cuddy and J. C.Raley: ‘Austenite grain coarsening in microalloyed steels’, Metall. Trans. A,1983, 14A, 1989–1995.

87. G. R. Speich, L. J. Cuddyand C. R. Deardo: ‘Phase transformations in ferrous alloys’, (ed. A. R. Marderand J. I. Goldstein), 523; 1984, Warrendale, PA, TMS-AIME.

88. C. Zener and C. > S.Smith: Trans AIME, 1948, 175, 15 51.

89. J. W. Martin:‘Micromechanisms in particle-hardened alloys’, 150; 1980, Cambridge, CambridgeUniversity Press.

90. R. D. Doherty and J. W.Martin: ‘Effect of a dispersed second phase on recrystallization ofaluminium-copper alloys’, J. Inst. Met., 1962 1963, 91, 332–338.

91. F. J. Humphreys and M.Hatherly: ‘Recrystallization and related annealing phenomena’, 2nd edn; 2004,Oxford, Elsevier Ltd.

92. R. D. Doherty, D. A.Hughes, F. J. Humphreys, J. J. Jonas, D. Juul Jensen, M. E. Kassner, W. E. King,T. R. McNelly, H. J. McQueen and A. D. Rollett: ‘Current issues inrecrystallization: a review’, Mater. Sci. Eng. A, 1997, A238, 219–274.

93. P. A. Manohar, M. Ferryand T. Chandra: ‘Five decades of the Zener equation’, ISIJ Int., 1998, 38,913–924.

94. D. T. Gawne and G. T.Higgins: ‘Secondary recrystallization in a steel containing coarse carbides andits relation to primary recrystallization structure’, J. Iron Steel Inst.,1971, 209, 562–566.

95. C. Kamma and E. Hornbogen:‘Effect of carbide particle-size on initiation of recrystallization of ahypoeutecoid steel’, J. Mater. Sci, 1976, 11, 2340–2344.

96. D. T. Gawne and G. T.Higgins: ‘Associations between spherical particles of two dissimilar phases’,J. Mater. Sci., 1971, 6, 403–412.

97. A. Pandit, A. Murugaiyan,A. Saha Podder, A. Halder, D. Bhattacharjee, S. Chandra and R. K. Ray: ‘Straininduced precipitation of complex carbonitrides in Nb–V and Ti–V microalloyedsteels’, Scr. Mater., 2005, 53, 1309–1314.

98. E. J. Palmiere, C. I.Garcia and A. J. DeArdo: ‘Compositional and microstructural changes whichattend reheating and grain coarsening in steels containing niobium’, Metall.Mater. Trans. A, 1994, 25A, 277–286.

99. J. J. Jonas and I. Weiss:‘Effect of precipitation on recrystallization in microalloyed steels’, Met.Sci., 1979, 13, 238–245.

100. A. LeBon, J. Rofes-Vernisand C. Rossard: ‘ Met. , 1975, 9, 36 40.

101. B. Datta, A. Valdes andC. M. Sellars: ‘Mechanism and kinetics of strain induced precipitation of Nb(C,N) in austenite’, Acta Metall., 1992, 40, 653–662.

102. B. Datta and C. M.Sellars: ‘Effect of composition and process variables on Nb(C, N) precipitationin niobium microalloyed austenite’, Mater. Sci.Technol., 1987, 3, 197–206.

103. B. Datta and C. M.Sellars: ‘Strengthening of austenite by niobium during hot rolling ofmicroalloyed steel’, Mater. Sci. Technol., 1986, 2, 146–153.

104. B. Datta, E. J. Palmiereand C. M. Sellars: ‘Modelling the kinetics of strain induced precipitation inNb microalloyed steels’, Acta Mater., 2001, 49, 785–794.

105. V. Nagarajan, E. J.Palmiere and C. M. Sellars: ‘New approach for modelling strain inducedprecipitation of Nb(C, N) in HSLA steels during multipass hot deformation inaustenite’, Mater. Sci. Technol., 2009, 25, 1168–1174.

106. C. M. Sellars: ‘Fromtrial and error to computer modelling of thermomechanical processing’,Ironmaking Steelmaking, 2011, 38, 250–257.

107. M. No ¨hrer, W. Mayer, S.Primig, S. Zamberger, E. Kozeschnik and H. Leitner: ‘Influence of deformationon the precipitation behaviour of Nb(C,N) in austenite and ferrite’, Metall.Mater. Technol. A, 2014, 45A, 4210–4219

108. M. No ¨hrer, W. Mayer, S.Zamberger, E. Kozeschnik and H. Leitner: ‘Precipitation of strain induced Vprecipitates at different temperatures in a 0.2 wt% C steel’, Steel Res. Int., 2014,85, 679–688.

109. M. Go ´mez, L. Rancel andS. F. Medina: ‘Effects of Nb, V, Ti and Al on recrystallisation/precipitationinteraction in microalloyed steels’, Mater. Sci. Forum, 2010, 638–642,3388–3393.

110. S. G. Hong, K. B. Kangand C. G. Park: ‘Strain induced precipitation of NbC in Nb and Nb–Timicroalloyed HSLA steels’, Scr. Mater., 2002, 46, 163–168.

111. S. F. Medina: ‘Fromheterogeneous to homogeneous nucleation for precipitation in austenite ofmicroalloyed steels’, Acta Mater., 2015, 84, 202–207.

112. W. J. Liu and J. J.Jonas: ‘A stress relaxation method for following carbonitride precipitation inaustenite at hot working Metall. Trans. A, 1988, 19A, 1403–1413.

113. A. J. DeArdo, M. J. Hua,K. G. Cho and C. I. Garcia: ‘On strength of microalloyed steels: aninterpretative review’, Met. Sci. Technol., 2009, 25, 1074–1082.

114. J. Irvine and T. N.Baker: ‘The influence of rolling variables on the strengthening of niobiumsteels’, Mater. Sci. Eng., 1984, 64 123–134.

115. V. Carretero Olalla, V.Bliznuk, N. Sanchez, P. Thibaux, L. A. I. Kestens and R. H. Petrov: ‘Analysisof the strengthening mechanisms in pipeline steels as a function of the hotrolling parameters’, Mater. Sci. Eng. A, 2014, A60, 46–56.

116. F. Heisterkamp, D.Lauderbod, L. Meyer and L. C. Straussburger: zirconium on toughness of weldablehigh strength struccontaining niobium or vanadium’, Stahl Eisen, 1970, 1255–1262.

117. D. N. Crowther and W. B.Morrison: ‘Influence of hypostoichiometric additions of titanium on theproperties of microalloyed structural steels’, in ‘Titanium technology in microalloyedsteels’, (ed. T. N. Baker), 44–64; 1997, London, Institute of Materials.

118. J. Strid and K. E.Easterling: ‘On the chemistry and stability of complex carbides and nitrides inmicroalloyed steels’, Acta Metall., 1985, 33, 2057–2074.

119. K. He and T. N. Baker:‘The effects of small titanium additions on the mechanical properties and themicrostructures of controlled rolled niobium-bearing HSLA plate steels’, Mater.Sci. Eng. A, 1993, A169, 53–65.

120. S. V. Subramanian and G.C. Weatherly: ‘Precipitation behavior of Ti-V and Ti-Nb microalloyed steels’,in ‘Titanium technology in microalloyed steels’, 133–149; 1997, London,Institute of Materials.

121. K. He and T. N. Baker:‘Complex carbonitrides in multimicroalloyed Ti-containing HSLA steel and theirinfluence on the mechanical properties’, in ‘Titanium technology in microalloyedsteels’, (ed. T. N. Baker), 115–132; 1997, London, Institute of Materials.

122. K. He and T. N. Baker:‘Zr-containing precipitates in a Ti-Nb microalloyed HSLA steel containing0.016wt% Zr addition’, Mater. Sci. Eng. A, 1996, A215, 57–66.

123. K. He and T. N. Baker:‘Effect of zirconium additions on austenite grain coarsening of C-Mn andmicroalloyed steels’, Mater. Sci. Eng. A, 1998, A256, 111–119.

124. T. N. Baker, Y. Li, J. A.Wilson, A. J. Craven and D. N. Crowther: ‘Evolution of precipitates, inparticular cruciform and cuboidal particles, during simulated direct chargingof thin slab cast vanadium microalloyed steels’, Mater. Sci. Technol., 2004, 20,720–730.

125. A. Grajcar:‘Thermodynamic analysis of precipitation processes in Nb–Ti microalloyed Si–AlTRIP steels’, J. Therm. Anal. Calorim, 2014, 118, 1011–1020.

126. M. Beres, T. E. Weich, K.Hulka and J. Meyer: ‘TEM investigations of fine niobium precipitates in HSLAsteel’, Steel Res. Int., 2004, 75, 753–758.

127. E. Courtois, T. Epicierand C. Scott: ‘EELS study of niobium carbonitride nano-precipitates inferrite’, Micron, 2006, 37, 492–502.

128. Z. Li, D. Liu, J. Zhangand W. Tian: ‘Precipitates in Nb and Nb– V microalloyed X80 pipeline steel’,Microsc. Microanal., 2013, 9,
62–65.

129. Y. E. Smith and A. P.Coldren: ‘Manganese–molybdenum– niobium acicular ferrite steels with highstrength and toughness’, in ‘Towards improved ductility and toughness’,119–142; 1971, Climax Molybdenum Development Company (Japan) Ltd.

130. F. Q. Ji, C. N. Li, S.Tang, Z. Y. Liu and G. D. Wang: ‘Effects of carbon and niobium on microstructureand properties for Ti bearing steels’, Mater. Sci. Technol., 2015, 69, 695–702.

131. S. S. Campos, E. V.Morales and H. -J. Kestenbach: ‘On strengthening mechanisms in commercial Nb-Tihot strip steels’, Metall. Mater. Trans. A, 2001, 32A, 1245–1248.

132. S. S. Campos, E. V.Morales and H.-J. Kestenbach: ‘A quantitative study of interphase precipitationin a commercial microalloyed steel’, Mater. Sci. Forum, 2003, 426–432,1517–1522.

133. M. Charleux, W. J. Poole,M. Militzer and A. Deschamps: ‘Precipitation behavior and its effect onstrengthening of an HSLA-Nb/Ti steel’, Metall. Mater. Trans. A, 2001, 32A, 1635–1647.

134. R. D. K. Misra, H.Nathani, J. E. Hartmann and F. Siciliano: ‘Microstructural evolution in a new770 MPa hot rolled Nb-Ti microalloyed steel’, Mater. Sci. Eng. A, 2005, A394,339–352.

135. M.-C. Zhao, K. Yang andY. Shan: ‘The effects of thermomechanical control process on microstructuresand mechanical properties of a commercial pipeline steel’, Mater. Sci. Eng. A, 2002,A335, 14–20.

136. M.-C. Zhao, K. Yang andY. Shan: ‘Comparison on strength and toughness behaviors of microalloyedpipeline steels with acicular and ultrafine ferrite’, Mater. Lett., 2003, 57,1496–1500.

137. F.-R. Xiao, B. Liao,Y.-Y. Shan, G.-Y. Qiao, Y. Zhong, C. Zhang and K. Yang: ‘Challenge ofmechanical properties of an acicular ferrite pipeline steel’, Mater. Sci. Eng.A, 2006, A431, 41–52.

138. W. Wang, Y.-Y. Shan andK. Yang: ‘Study of high strength pipeline steels with differentmicrostructures’, Mater. Sci. Eng. A, 2009, A502, 38–44.

139. H. Beladi, G. L. Kellyand P. D. Hodgson: ‘Ultrafine grained structure in steels using dynamic straininduced transformation processing’, Int. Mater. Rev., 2007, 52, 14–28.

140. P. D. Hodgson, M. R.Hickson and R. K. Gibbs: US Patent No. 6,027,587; 2000.

141. P. D. Hodgson, M. R.Hickson and R. K. Gibbs:‘Ultrafine ferrite in low carbon steel’, Sci. Mater.,,1999, 40, 1179–1184.

142. J.-K. Choi, D.-H. Seo, J.-S.Lee, K.-K. Um and W.-Y. Choo: ‘Formation of ultrafine ferrite by strain-induceddynamic transformation in plain low carbon steel’, ISIJ Int., 2003, 43, 746–754.

143. H. Beladi, G. L. Kelly,A. Shokouhi and P. D. Hodgson: ‘The evolution of ultrafine ferrite formationthrough dynamic straininduced transformation’, Mater. Sci. Eng. A, 2004, A371, 343–352.

144. R. Priestner: ‘Origin offine-grained ferrite in steels rolled under controlled rolled conditions’, Rev.Metall., 1975, 72, 285–296.

145. Z. Yang and R. Wang:‘Formation of ultra-fine grain structure of plain low carbon steel throughdeformation induced ferrite transformation’, ISIJ Int., 2003, 43, 761–766.

146. K. Muszka, D. Dziedzic,L. Madej, J. Majta, P. D. Hodgson and E. J. Palmiere: ‘The development ofultrafine-grained hot rolling products using advanced thermomechanicalprocessing’, Mater. Sci. Eng. A, 2014, A610, 290–296.

147. H. Yada, Y. Matsumura andK. Nakajima: US Patent No. 4,466, 842; 1984.

148. H. Tamerhiro, M. Murata,R. Habu and M. Nagumo: ‘Optimum microalloying of niobium and boron in HSLAsteel for thermomechanical processing’, Trans. Iron Steel. Inst. Jpn., 1987, 27,120–129.

149. H. K. D. H. Bhadeshia:‘Bainite is steels’; 1992, London, The Institute of Materials.

150. R. Y. Zhang and J. D.Boyd: ‘Bainite transformation in deformed austenite’, Metall. Mater. Trans. A,2010, 41A, 1448–1459.

151. C. Lee, H. Bhadeshia andH. Lee: ‘Effect of plastic deformation on the formation of acicular ferrite’,Mater. Sci. Eng. A, 2003, A360, 249–257.

152. O. Grong and D. K.Matlock: ‘Microstructural development in mild and low-alloy steel weld metals’,Int. Met. Rev., 1986, 31, 27–48.

153. C. L. Davis and J. E.King: ‘Cleavage initiation in the intercritically reheated coarse-grainedheat-affected zone. Part I: fractographic evidence’, Metall. Mater. Trans.,1994, 25, 5663–5673.

154. Y. Li, D. N. Crowther, M.J. W. Green, P. S. Mitchell and T. N. Baker: ‘The effect of vanadium andniobium on the properties and microstructure of the intercritically reheatedcoarse grained heat affected zone in low carbon microalloyed steels’, ISIJInt., 2001,41, 46–55.

155. Y. Li and T. N. Baker:‘Effect of morphology of martensiteaustenite phase on fracture of weld heataffected zone in vanadium and niobium microalloyed steels’, Mater. Sci. Technol.,2010, 26, 1029–1040. Baker Microalloyed steels 40 Ironmaking and Steelmaking2016 ‘Effect of tural steels 90,

156. M. Reichert, T. Garcin,M. Militzer and W. J. Poole: ‘Formation of martensite/austenite (M/A) in X80linepipe steel’, in Proc.9thInt. Pipeline Conf., Calgary, Alta, Canada,September 2012, ASME, 1–7.

157. F. G. Caballero, M. K.Miller and C. Garcia-Mateo: ‘Opening previously impossible avenues for phasetransformation in innovative steels by atom probe tomography’, Mater. Sci. Technol.,2014, 30, 1034–1039.

158. K. A. Taylor and S. S.Hansen: ‘Effects of vanadium and processing parameters on the structures andproperties of a direct-quenched low-carbon Mo-B steel’, Metall. Trans. A, 1991,22A, 2359–2374.

【最全获奖名单】奉俊昊《寄生虫》创造历史!韩国电影首获戛纳金棕榈大奖,第72届戛纳电影节闭幕!

第72届戛纳国际电影节 第72届戛纳电影节闭幕! 奉俊昊《寄生虫》创造历史! 韩国电影首获戛纳金棕榈大奖! 戛纳当地时间25号晚上,北京时间26号今天凌晨第72届戛纳电影节闭幕!韩国导演奉俊昊《寄生虫》创造历史!摘得戛纳电影节最高奖项,金棕榈大奖,是韩国

159. R. K. Weiss and S. W.Thompson: ‘Strength differences between direct-quenched andreheated-and-quenched plate steels’, in ‘Physical metallurgy of direct-quenchedsteels’, (ed. K. A. Taylor et al.), 107–138; 1993, Warrendale, PA, Minerals, Metals,Materials Society.

160. D. V. Edmonds and R. C.Cochrane: ‘Structure-property relationships in bainitic steels’, Metall. Trans.A, 1990, 21A, 1527–1540.

161. G. Tither and J. Kewell:‘Properties of directly quenched and tempered structural steel plate’, J. IronSteel Inst., 1970, 208, 686–694.

162. G. Tither and J. Kewell:‘Microstructure and mechanical properties of some direct-quenched and temperedlow-carbon steel’, J. Iron Steel Inst., 1971, 209, 482–484.

163. G. Tither, J. Kewell andM. G. Frost: ‘Improved properties of directly quenching’ ‘Effects ofsecond-phase particles on the mechanical properties of steel’, 157–165; 1971,London, The Iron and Steel Institute.

164. T. Siwecki, A. Sandberg,W. Roberts and R. Lagneborg: ‘The influence of processing route and nitrogencontent on microstructure development and precipitation hardening in vanadiummicroalloyed steels’, in ‘Thermomechanical processing of microalloyedaustenite’, (ed. A. J. Deardo et al.), 163–192; 1982, Warrendale, PA, TheMetallurgical Society of AIME.

165. S. Zajac, T. Siwecki, B.Hutchinson and M. Attlega ˚rd: ‘Recrystallization controlled rolling andaccelerated cooling for high strength and toughness in V-Ti-N steels’, Metall.Trans. A, 1991, 22A, 2681–2694.

166. T. Siwecki, B. Hutchinsonand S. Zajac: ‘Proc. Microalloying ’95, Warrendale, PA, USA, June 1995, ISS-AIME,197–211.

167. T. Siwecki, J. Eliasson,R. Lagneborg and B. Hutchinson: ‘Vanadium microalloyed bainitic hot stripsteels’, ISIJ Int., 2010, 760–767.

168. B. Hutchinson, T.Siwecki, J. Komenda, J. Hagstro ¨m, R. Langneborg, J.-E. Hedlin and M. Glagh:‘New vanadium-microalloyed 191. J. A. Wilson, A. J. Craven, Y. Li and T. N.Baker: ‘Dispersion baintic 700MPa strip steel product’, Ironmaking Steelmaking,1–6.

169. S. Shanmugam, N. K.Ramisetti, R. D. K. Misra, J. Hartmann and S. G. Jansto: ‘Microstructure andhigh strength–toughness combination of a new 700 MPa Nb-microalloyed pipelinesteel’, Mater. Sci. Eng., 2008, 478, 26–37.

170. Z. J. Xie, Y. P. Fang, G.Han, H. Guo, R. D. K. Misra and C. J. Shang: ‘Structure–property relationshipin a 960 MPa grade ultrahigh strength low carbon niobium–vanadium microalloyed steel:the significance of high frequency induction tempering’, Mater. Sci. Eng. A,2014, A618, 112–117.

171. H. L. Yi, L. X. Du, G. D.Wang and X. H. Liu: ‘New Ti-bearing high strengthened steel’, J. Mech. Eng.,2008, 44, 50–54.

172. H. L. Yi, L. X. Du, G. D.Wang and X. H. Liu: ‘Development of Nb– V–Ti hot-rolled high strength steelwith fine ferrite and precipitation strengthening’, J. Iron Steel Res. Int.,2009, 16, 72–77.

173. H. L. Yi, Y. Xu, Z. G.Xu, Z. Y. Liu and G. D. Wang: ‘Microstructure and properties of low cost 780MPa hot-rolled high-strength steel’, Mater. Mech. Eng., 2010, 34, 37–39.

174. H. L. Yi, Z. Y. Liu, G.D. Wang and D. I. Wu: ‘Development of Ti-microalloyed 600 MPa hot rolled highstrength steel’, J. Iron Steel Res. Int., 2010, 17, 54–58.

175. P. Cizek, B. P. Wynne, C.H. J Davies and P. D. Hodgson: ‘The effect of simulated thermomechanicalprocessing on the transformation behavior and microstructure of a low-carbonMo-Nb linepipe steel’, Metall. Mater. Trans. A, 2015, 46A, 407–425.

176. X. Liang and A. J.DeArdo: ‘A study of the influence of thermomechanical controlled processing onthe microstructure of bainite in high strength plate steel’, Metall. Mater.Trans. A, 2014, 45A, 5173–5184.

177. C. Garcia-Mateo, F. G.Caballero and H. K. D. H. Bhadeshia: ‘Development of hard bainite’, ISIJ Int.,2003, 43, 1238–1243.

178. K. D. H. Bhadeshia:‘Large chunks of very strong steel’, Mater. Sci. Technol., 2005, 21, 1293–1302.

179. F. G. Caballero, C.Garcia-Mateo and M. K. Miller: ‘Modern steels at atomic and nanometre scales’,Mater. Sci. Technol., 2015, 31, 764–772.

180. B. Avishan, S. Yazdani,F. G. Caballero, T. S. Wang and C. Garcia-Mateo: ‘Characterisation ofmicrostructure and mechanical properties in two different nanostructuredbainitic steels’, Mater. Sci. Technol.

181. R. J. Glodowski:‘Experience in producing vanadium microalloyed steels thin-slab-casting steeltechnology’ in Int. Symp. ‘Thin-slab casting and rolling’, Guangzhou, China, December3 5, 2000, Chinese Society for Metals, 329 339.

182. Q. Y. Sha, Z. Q. Sun andL. F. Li: ‘Refinement of coarse grained austenite in Nb–V–Ti microalloyedsteels during roughing rolling’, Ironmaking Steelmaking, 2015, 42, 74–80.

183. C. Klinkenberg, C.Bilgen, T. Boecher and J. Schlu ¨ter: ‘20 years of experience in thin slabcasting and rolling state of the art and future developments’, Mater. Sci.Forum, 2010, 638–642, 3610–3615.

184. J. M. Rodriguez-Ibabe:‘Thin slab direct rolling of microalloyed steels’, Mater. Sci. Forum, 2005,500–501, 49–62.

185. H. Bruns and R. Kaspar:‘Direct charging of thin slabs of a cold formable HSLA steel’, Steel Res.,1997, 68, 215–219.

186. R. Priestner and C. Zhou:‘Simulation of microstructural evolution in Nb–Ti microalloyed steel during hotdirect rolling’, Ironmaking Steelmaking, 1995, 22, 326–332.

187. Y. Li, D. N. Crowther, P.S. Mitchell and T. N. Baker: ‘The evolution of microstructure during thin slabdirect rolling processing in vanadium microalloyed steels’, ISIJ Int., 2002,42, 636–644.

188. Y. Li, J. A. Wilson, D.N. Crowther, P. S. Mitchell, A. J. Craven and T. N. Baker: ‘The effects ofvanadium, niobium, titanium and zirconium on the microstructure and mechanicalproperties of thin slab cast steels’, ISIJ Int., 2004, 44, 1092–1102.

189. T. N. Baker, Y. Li, J. A.Wilson, A. J. Craven and D. N. Crowther: ‘Evolution of precipitates, inparticular cruciform and cuboid particles, during simulated direct charging ofthin slab cast vanadium microalloyed steels’, Mater. Sci. Technol., 2004, 20,720–730.

190. Y. Li, J. A. Wilson, A.J. Craven and T. N. Baker: ‘Dispersion strengthening in vanadium microalloyedsteels processed by simulated thin slab casting and direct charging. Part 1: processingparameters, mechanical properties and microstructure’, Mater. Sci. Technol.,2007, 23, 509–518.

191. J. A. Wilson, A. J.Craven, Y. Li and T. N. Baker: ‘Dispersion strengthening in vanadiummicroalloyed steels processed by simulated thin slab casting and directcharging. Part 2: chemical characterisation of dispersion strengtheningprecipitates’, Mater. Sci. Technol., 2007, 23, 519–527.

192. Q. Y. Sha and Z. Q: ‘Sun:Grain growth behaviour of coarsegrained austenite in a Nb–V–Ti microalloyedsteel’, Mater. Sci. Eng. A, 2009, A523, 77–84.

193. Q. Y. Sha and Z. Q. Sun: ‘Microstructureand precipitation in as cast low carbon Nb–V–Ti microalloyed medium thin slab’,Ironmaking Steelmaking, 2010, 37, 320–325.

194. Q. Y. Sha and Z. Q. Sun:‘Prediction of grain growth of coarsegrained austenite in Nb-V-Ti microalloyedsteel’, Mater. Sci. Technol., 2011, 27, 1408–1411.

195. N. Gao and T. N. Baker:‘Austenite grain growth behaviour of microalloyed Al-V-N and Al-V-Ti-N steels’,ISIJ Int., 1988, 38, 744–751.

196. N. Gao and T. N. Baker:‘The evaluation of austenite grain size and particle size of microalloyedsteels’, in ‘Proc. Conf. HSLA Steels 2000’, (ed. G. Li et al.), 187–194; 2000,Beijing, The Metallurgical Press.

197. J. Zhang and T. N. Baker:‘Effect of equalisation time on the austenite grain size of simulated thin slabdirect charged (TSDC) vanadium microalloyed steels’, ISIJ Int., 2003, 43, 2015–2022.

198. P. Uranga, A. I. Ferna´ndez, B. Lo ´pez and J. M. Rodriguez-Ibabe: ‘Modeling of austenite grain sizedistribution in Nb microalloyed steels processed by thin slab casting anddirect rolling (TSDR) route’, ISIJ Int., 2004, 44, 1416–1425.

199. P. Uranga, B. Lo ´pez andJ. M. Rodriguez-Ibabe: ‘Role of carbon and nitrogen content on microstructuralhomogeneity in thin slab direct rolled microalloyed steels’, Ironmaking Steelmaking,2009, 36, 162–169. Baker Microalloyed steels Ironmaking and Steelmaking 2016 41, 2015, 31, 1508–1520.

200. C. P. Reip, S. Shanmugamand R. D. K. Misra: ‘High strength microalloyed C Mn (V-Nb-Ti) and C Mn (V-Nb)pipeline steels processed through CPS thin slab technology: microstructure, precipitationand mechanical properties’, Mater. Sci. Eng. A, 2006, A424, 307–317.

201. C. Klinkenberg, K. Hulkaand W. Bleck: ‘Niobium carbide precipitation in microalloyed steel’, Steel Res.Int., 2003, 75, 744–752.

202. Z. Jia, R. D. K. Misra,R. O’Malley and S. J. Jansto: ‘Fine-scale precipitation and mechanicalproperties of thin slab processed titanium–niobium bearing high strengthsteels’, Mater. Sci. Eng. A, 2011, A528, 7077–7083.

203. M. T. Nagata, J. G. Speerand D. K. Matlock: ‘Titanium nitride precipitation in thin-slab casthigh-strength low-alloy steel’, Metall. Mater. Trans. A, 2002, 33A, 3099–3110.

204. K. Easterling: ‘Theintroduction to the physical metallurgy of welding’, 2nd edn; 1992, Oxford, Butterworth-HeinemannLtd.

205. P. H. M. Hart: ‘Theinfluence of vanadium-microalloying on the weldability of steels’, Weld.Cutting, 2003, 55, 204–210.

206. N. A. McPherson: ‘Throughprocess considerations for microalloyed steels used in naval ship construction’,Ironmaking Steelmaking, 2009, 36, 193–200.

207. T. J. George and J. J.Irani: ‘Control of austenite grain size by additions of titanium’, J. Aust.Inst. Met., 1968, 13, 94 106. – 208. S. Kanazawa, A. Nakashima, K. Okamota andK. Kanaya: ‘Improvement of weld fusion zone toughness by fine TiN’, Trans. IronSteel Inst. Jpn., 1976, 16, 486–495.

209. S. Matsuda and N.Okumura: ‘Effect of distribution of TiN precipitate particles on the austenitegrain size of low carbon low alloy steels’, Trans. Iron Steel Inst. Jpn., 1978,18, 198–205.

210. P. H. M. Hart and G.Ferguson: ‘The role of titanium on the weldability of microalloyed structuralsteels’, in ‘Titanium technology in microalloyed steels’, (ed. T. N. Baker),169–179; 1997, London, Institute of Materials.

211. S. F. Medina, M. I. Vega,M. Go ´mez and P. P. Go ´mez: ‘Influence of the size and volume fraction of TiNparticles on hot strength and dynamic recrystallization in structural steels’,ISIJ Int., 2005, 45, 1307–1315.

212. J. Du, M. Strangewood andC. L. Davis: ‘Effect of TiN particles and grain size on the Charpy impacttransition temperature in steels’, J. Mater. Sci. Technol., 2012, 28, 878–888.

213. H. Adrian and F. B.Pickering: ‘Effect of titanium additions on austenite grain growth kinetics ofmedium carbon V-Nb steels containing 0.008-0.018%N’, Mater. Sci. Technol.,1991, 7, 176–182.

214. M. Hamada, Y. Fukada andY.\-I. Komizo: ‘Microstructure and precipitation behaviour in heat affectedzones of C-Mn microalloyed steel containing Nb, V and Ti’, ISIJ Int., 1995, 35,1196–1202.

215. A. H. Koukabi, T. H.North and H. B. Bell: ‘Properties of submerged arc deposits-effects ofzirconium, vanadium and titanium-boron’, Met. Constr., 1979, 7, 639–642.

216. F. Chai, C. F. Yang, H.Su, Y. Q. Zhang, Z. Xu and Y. H. Yang: ‘Effect of Zr addition to Ti-killedsteel on inclusion formation and microstructural evolution in welding inducedcoarse-grained heat affected zone’, Acta Metall. Sin. (Eng. Lett.), 2008, 21,220–226.

217. A. M. Guo, S. R. Li, J.Guo, Q. F. Ding, K. M. Wu and X. L. He: ‘Effect of zirconium addition on theimpact toughness of the heat affected zone in a high strength low alloypipeline steel’, Mater. Charact., 2008, 59, 134–139.

218. X. L. Wan, K. M. Wu, K.C. Nune, Y. Li and L. Chung: ‘In situ observation of acicular ferrite formationand grain refinement in simulated heat affected zone of high strength low alloysteel’, Sci. Technol. Weld. Join., 2015, 20, 254–263.

219. T. Koseki and G. Thewlis:‘Inclusion assisted microstructure control in C-Mn and low alloy steel welds’,Mater. Sci. Technol., 2005, 21, 869–879.

220. J. R. Garland and P. R.Kirkwood: ‘Towards improved submerged arc weld metal’, Met. Constr., 1975, 7,320–330.

221. G. S. Barritte and D. V.Edmonds: Proc.Int. Conf. on Advances in the physical metallurgy andapplications of steel’, 126–135; 1982, London, The Metals Society.

222. A. R. Mills, G. Thewlisand J. A. Whiteman: ‘Nature of inclusions in steel weld metals and their influenceon formation of acicular
ferrite’, Mater. Sci. Technol., 1987, 3, 1051–1061.

223. N. Mori, H. Homm, S.Okita and K. Asano: ‘The behaviour of B and N in notch toughness improvement ofTi-B bearing weld metals’, IIW Document IX-1158-80, 1980, London, UK,International Institute of Welding.

224. H. Nako, Y. Okazaki andJ. G. Speer: ‘Acicular ferrite formation on Ti-rare earth metal-Zr complexoxides’, ISIJ Int., 2015, 55 ,
250–256.

225. ‘Stir welding ofdissimilar alloys’, Sci. Technol. Weld. Join., 2010, 15, 266–336.

226. ‘Friction stir welding ofsteels’, Sci. Technol. Weld. Join., 2010, 15, 646–711.

227. W. M. Thomas, E. D.Nicholas, J. C. Needham, M. G. Murch, P. Temple-Smith and C. J. Dawes:‘Improvements relating to friction stir welding’, ‘International patentapplication no. PCT/GB92/ 02203 and GB patent application no. 9125978?8 and USpatent application no. 5,460,317, December 1991’.

228. W. M. Thomas and C. J.Dawes: ‘Friction stir process welds aluminum alloys’, Weld. J., 1996, 75,41–45.

229. G. Cam: ‘Friction stirwelded structural materials: beyond Alalloys’, Int. Met. Rev., 2011, 56, 1–48.

230. Y. S. Sato, T. W. Nelsonand C. J. Sterling: ‘Recrystallization in type 304L stainless steel duringfriction stirring’, Acta Mater., 2005, 53, 637–645.

231. M. Root, D. P. Field andT. W. Nelson: ‘Crystallographic texture in the friction-stir-welded metalmatrix composite Al6061 with 10 vol pct Al2O3’, Metall. Mater. Trans. A, 2009,40A, 2109–2014.

232. http://en.wikipedia.org/wiki/Friction_stir_welding.

233. W. M. Thomas, P. L.Threadgill and E. D. Nicholas: ‘Feasibility of friction stir welding steel’,Sci. Technol. Weld. Join., 1999, 4, 365–372.

234. T. J. Lienert, W. L.Stellwag, B. B. Grimmett and R. W. Warke: ‘Friction stir welding studies onmild steel – process results, microstructures, and mechanical properties arereported’, Weld. J., 2003, 82, 1S–9S.

235. M. Gosh, K. Kumar and R.S. Mishra: ‘Analysis of microstructural evolution during friction stir weldingof ultrahigh strength steels’, Scr. Mater., 2010, 63, 851–854.

236. J. Young, D. P. Field andT. W. Nelson: ‘Material flow during friction stir welding of HSLA 65 steel’,Metall. Mater. Trans. A, 2013, 44A, 3167–3175.

237. P. J. Konol, J. A.Mathers, R. Johnson and J. R. Pickens: ‘Friction stir welding of HSLA-65 steelfor shipbuilding’, J. Ship. Prod., 2003, 19, 159–164.

238. A. I. Toumpis, A. M.Galloway, L. Arbaoui and N. Poletz: ‘Thermomechanical deformation behaviour ofDH36 steel during friction stir welding by experimental validation and modelling’,Sci. Technol. Weld Join., 2014, 19, 653–663.

239. A. De, H. K. D. H.Bhadeshia and T. DebRoy: ‘Friction stir welding of mild steel: tool durabilityand steel microstructure’, Mater. Sci.Technol., 2014, 30, 1050–1055.

240. Y. Morisada, T. Imaizumiand H. Fujii: ‘Clarification of material flow and defect formation duringfriction stir welding’, Sci. Technol. Weld. Join., 2015, 20, 130–137.

241. A. Ozekcin, H. W. Jin, J.Y. Koo, N. V. Bangaru, R. Ayer, G. Vaugn, R. Steel and S. Packer: ‘Amicrostructural study of friction stir welded joints of carbon steels’, Int. J.Offshore Polar Eng., 2004, 14, 284–288.

242. S. Mironov, Y. S. Satoand H. Kokawa: ‘Microstructural evolution during friction stir-processing ofpure iron’, Acta Mater., 2008, 56, 2602–2614.

243. H. -H. Cho, S. H. Kang,S-H. Kim, K. H. Oh, H. J. Kim,W, S. Chang and H. N. Han: ‘Microstructural evolutionin friction stir welding of high-strength linepipe steel’, Mater. Des., 2012, 34,258–267.

244. H. Aydin: ‘Relationshipbetween a bainitic structure and the hardness in the weld zone of thefriction-stir welded X80 APIgrade pipe-line steel’, Mater. Technol., 2014, 48,15–22.

245. X. Yu, B. Mazumder, M. K.Miller, S. A. David and Z. Feng: ‘Stability of Y-Ti-O precipitates in frictionstir welded nanostructured ferritic alloys’, Sci. Technol. Weld. Join., 2015, 20,236–241.

246. P. S. Davies, B. P. Wynne,W. M. Rainforth, M. J. Thomas and P. L. O. Threadgill: ‘Development ofmicrostructure and crystallographic texture during stationary shoulder frictionstir welding of Ti-6Al-4V’, Metall. Mater. Trans. A, 2011, 42A, 2278–2289.

247. S. J. Barnes, A. Steuwer,S. Mahawish, R. Johnson and P. J. Withers: ‘Residual strains and microstructuredevelopment in single and sequential double sided friction stir welds in RQT- 701steel’, Mater. Sci. Eng. A, 2008, A492, 35–44.

248. N. A. McPherson, A. M.Galloway, S. R. Cater and M. M. Osman: \Proc. 9th Int. Conf. on ‘Trends inwelding research’, Chicago, IL, USA, June 2012, ASM International’, 284–290.

249. T. N. Baker and N. A.McPherson: ‘Microstructure and properties of double side friction stir weldedEN46 ship steel’, Unpublished work.

250. S.Rahimi, B.P . Wynne andT.N.Baker: ‘Formationofmicrostructure of friction stir double-sided welded EH46steel’, Unpublished work. Baker Microalloyed steels 42 Ironmaking andSteelmaking 2016 ness of HSLA steel weld materials’, ‘ ‘Mictrostructure andtough-

251. A.-F. Gourgues, H. M. Flowerand T. C. Lindley: ‘Electron backscattering diffraction study of acicular,bainite and martensite steel microstructures’, Mater. Sci. Technol., 2000, 16, 26–39.

252. F. B. Pickering and T.Gladman: ‘An investigation into some factors which control the strength ofcarbon steels’ ‘Metallurgical developments in carbon steels’, Special Report 81,11–20; 1963, London, ISI.

253. E. Hornbogen and G.Staniek: ‘Grain-size dependence of the mechanical properties of anage-hardening Fe–1% Cu-alloy’, J. Mater. Sci., 1974, 9, 879–886.

254. T. Gladman and F. B.Pickering: ‘The effect of grain size on mechanical properties of ferrousmaterials’, in ‘Yield, flow and fracture of polycrystals’, (ed. T. N. Baker),141–198; 1983, London, Applied Science Publishers.

255. T. N. Baker:‘Determination of the friction stress from microstructural measurements’, in‘Yield, flow and fracture of polycrystals’, (ed. T. N. Baker), 235–273; 1983,London, Applied Science Publishers.

256. T. N. Baker: ‘Subgrainand dislocation strengthening in controlled-rolled microalloyed steels’, in‘Hot working and forming processes’, (ed. C. M. Sellars and G. J. Davies),32–37; 1990, London, Institute of Materials.

257. W. B. Morrison, R. C.Cochrane and P. S. Mitchell: ‘The influence of precipitation mode anddislocation substructure on the properties of vanadium-treated steels’, ISIJInt., 1993, 33, 1095–1103.

258. R. A. F. de Reaumur: ‘Onmethods of recognizing defects and good quality in steel and on several ways ofcomparing different grades of steel’ ‘L’Art de Convertir le Fer Forge en Acier.(Paris, 1722), 63-106; transl. A. G. Sisco (Chicago, 1956)’, 176–204.

259. P. C. Grignon: ‘On themetamorphoses of iron’ ‘Memoires de Physique sur l’Art de Fabriquer de Fer’,(Paris, 1775), 56 90, transl P. Boucher, C.S. Smith, in ‘Sources for thehistory of the science of steel , 1532–1786 (The Society for the History of Technologyand the MIT Press, Cambridge, MA, 1968) 125–164.

260. C. H. Desch:‘Metallography’, 3rd edn, 1–9; 1922, London, Longman, Green and Co. 261. R. W.Armstrong: ‘Engineering science aspects of the Hall–Petch relation’, ActaMech., 2014, 225, 1013–1028.

262. A. G. Quarrell:‘Metallography – a hundred years after Sorby’ ‘Metallography’, Special Report80, 1–36; 1963, Iron and Steel Institute.

263. R. W. Armstrong: ‘60Years of Hall–Petch: past to present nanoscale connections’, Mater. Trans.,2014, 55, 2–12.

264. W. B. Morrison: ‘Effectof grain size on stress-strain relationship in low-carbon steel’, Am. Soc. Q.,1966, 59, 824–829.

265. A. Kelly and R. B.Nicholson: ‘Precipitation hardening’, Prog. Mater. Sci., 1963, 10, 149–391.

266. L. M. Brown and R. K.Ham: ‘Dislocation-particle interactions’, in ‘Strengthening methods incrystals’, (ed. A. Kelly and R. B. Nicholson), 12–135; 1971, London, AppliedScience Publishers.

267. V. Gerold: ‘Precipitationhardening’, in ‘Dislocations in solids’, (ed. F. R. N. Nabarro), 219–260; 1979,Amsterdam, NorthHolland Publishing Company.

268. T. Gladman, B. Holmes andI. D. McIvor: ‘Effects of secondphase particles on strength, toughness andductility’, in ‘Effects of second-phase particles on the mechanical propertiesof steel’, 68–78; 1971, London, The Iron and Steel Institute.

269. T. Gladman:‘Precipitation hardening in metals’, Mater. Sci. Technol., 1999, 15, 30–36.

270. H. J. Goldschmidt:‘Interstitial alloys’, 238–239; 1957, London, Butterworths.

271. T. Epicier, D. Acevedoand M. Perez: ‘Crystallographic structure of vanadium carbide precipitates in amodel Fe–V–C steel’, Philos. Mag., 2008, 88, 31–45.

272. G. E. Hollox, J. W.Edington and R. B. Scarlin: ‘Identity of vanadium carbide precipitates inFe-1V-0.02Nb-0.2C and Ni- 4V-0.4C alloys’, JISI, 1971, 209, 839–841.

273. E. Tekin and P. M. Kelly:‘Secondary hardening of vanadium steels’, JISI, 1965, 203, 715–720.

274. E. Smith: ‘Aninvestigation of secondary hardening of a 1 percent vanadium–0.2 percent carbonsteel’, Acta Metall., 1966, 14, 583–593.

275. A. T. Davenport:‘Occurrence of ‘arced’ reflections in diffraction patterns from a vanadium steel’,JISI, 1968, 206, 499–501. 276. A. T. Davenport and R. W. K. Honeycombe:‘Precipitation of carbides at gamma-alpha boundaries of alloyed steels’, Proc. R.Soc. A, 1971, A332, 191 205.

277. F. A. Khalid and D. V.Edmonds: ‘Interphase precipitation in microalloyed engineering steels and modelalloy’, Mater. Sci. Technol., 1993, 9, 384–396.

278. E. V. Morales, J. Gallegoand H.-J. Kiestenbach: ‘On coherent carbonitride precipitation in commercialmicroalloyed steels’, Philos. Mag. Lett., 2003, 83, 79–87.

279. H. -J. Kiestenbach, S. S.Campos and E. V. Morales: ‘Role of interface precipitation in microalloyed hotstrip steels’, Mater. Sci. Technol., 2006, 22, 615–626.

280. M. No ¨hrer, S.Zamberger, S. Primig and H. Leitner: ‘Atom probe study of vanadium interphaseprecipitates and randomly distributed vanadium precipitates in ferrite’,Micron, 2013, 54– 55, 57–64.

281. H. W. Yen, C. Y. Chen, T.Y. Wang, C. Y. Huang and J. R. Yang: ‘Orientation relationship transition ofnanometre sized interphase precipitated TiC carbides in Ti bearing steel’, Met.Sci. Technol., 2010, 26, 421–430.

282. Y.-J. Zhang, G. Miyamoto,K. Shinbo and T. Furuhara: ‘Effects of a/c orientation relationship on VCinterphase precipitation in low-carbon steels’, Scr. Mater., 2013, 69, 17–20.

283. M.-Y. Chen, M. Goune ´,M. Verdier, Y. Bre´chet and J.-R. Yang: ‘Interphase precipitation invanadium-alloyed steels: strengthening contribution and morphologicalvariability with austenite to ferrite transformation’, Acta Mater., 2014, 64,78–92.

284. S. Freeman: ‘Interphaseprecipitation in a titanium steel’ ‘Effects of second-phase particles on themechanical properties of steel’, 152–156; 1971, London, The Iron and SteelInstitute.

285. E. Orowan: ‘Internalstresses in metals and alloys’, Inst. Met., 1948, 451–457.

286. M. F. Ashby: ‘Thehardening of metals by non-deforming particles’, Z. Metallkd, 1964, 55, 5–17.

287. H. S. Ubhi and T. N.Baker: ‘Artefacts and their influence on the analysis of small particles inextraction replicas’ , in ‘Analytical electron microscopy with high spatialresolution’, 135–145; 1988, London, Institute of Metals.

288. T. N. Baker:‘Quantitative metallography using transmission electron microscopy’, in‘Quantitative microscopy of high temperature materials’, (ed. A. Strang and J.Crawley), 161–189; 2001, London, IOM Communications Ltd.

289. M. Mackenzie, A. J.Craven and C. L. Collins: ‘Nanoanalysis of very fine VN precipitates in steel’,Scr. Mater., 2006, 54, 1–5. 290. G. I. Taylor: ‘The mechanism of plastic deformationof crystals’, Proc. R. Soc. A, 1934, 145A, 362–388.

291. W. Roberts, S. Karlssonand Y. Bergstron: ‘Rate of dislocation multiplication in polycrystalline iron’,Mater. Sci. Eng., 1973, 11, 247–254.

292. H. Conrad and J. Narayan:‘On the grain size softening in nanocrystalline materials’, Scr. Mater., 2000,42, 1025–1030.

293. C. Carlton and P. J.Ferreira: ‘What is behind the inverse hall– petch behavior in nanocrystallinematerials?’, Acta Mater., 2007, 55,

294. J. D. Embury:‘Strengthening by dislocation substructures’, in ‘Strengthening methods incrystals’, (ed. A. Kelly and R. B. Nicholson), 331–402; 1971, London, AppliedScience Publishers Ltd.

295. A. W. Thompson:‘Substructural strengthening mechanisms’, Metall. Trans. A, 1977, 8A, 833–842.

296. F. R. Castrofernandez andC. M. Sellars: ‘Relationship between room-temperature proof stress, dislocationdensity and subgrain size’, Philos. Mag., 1989, 60, 487–506.

297. P. L. Mangonon Jr and W.E. Heitmann: ‘Subgrain and precipitation-strengthening effects in hot-rolled,columbiumbearing steels’, in Proc. Microalloying ’75, Washington, DC, USA,October 1975, Union Carbide, 59–70.

298. E. V. Morales, R. A.Silva, I. S. Bott and S. Paciornik: ‘Strengthening mechanism in a pipelinemicroalloyed steels with a complex microstructure’, Mater. Sci. Eng. A, 2013,A585, 253–260.

299. H. Kimura: ‘Mechanicalproperties of high purity iron and its dilute alloys’, Mater. Trans. Jpn. Inst.Met., 1999, 40, 1025–1031.

300. A. J. E. Foreman and M.J. Makin: ‘Dislocation movement through random arrays of obstacles’, Philos.Mag, 1966, 14,

301. U. F. Kocks: ‘Alloysuperposition of alloy hardening, strain hardening and dynamic recovery’ Proc.5th Int. Conf. ‘Strength of metals and alloys’, (ed. P. Haasen, V. Gerold and

302. J. Li, F. Y. Sun and W.C. Xu: ‘On the evaluation of yield strength for microalloyed steels’, Scr.Metall. Mater., 1990, 24, 1393–1398.

303. W. B. Morrison, R. C.Cochrane and P. S. Mitchell: ‘The influence of precipitation mode anddislocation substructure on Baker Microalloyed steels Ironmaking andSteelmaking 2016 43 – , 3749–3756. 911–924. G. Kostorz), 1661–1680; 1980,Oxford, Pergamon Press. – the properties of vanadium-treated steels’, ISIJInt., 1993, 33, 1095–1103x.

304. R. J. Glodowski: ‘An empiricalprediction model of the incremental strengthening of ferrite/pearlite steelswith additions of vanadium and nitrogen, with emphasis on the effective nitrogenlevel’, Int. J. Metall. Eng., 2013, 2, 46–61.

305. G. R. Speich: ‘Temperingof low-carbon martensite’, Trans. Metall. Soc. AIME, 1969, 245, 2553–2564.

306. W. G. Hall and T. N.Baker: ‘Electrical resistivity and length changes during precipitation inFe-V-C alloy’, Met. Sci., 1981, 15, 447–454.

307. G. Staniek and E.Hornbogen: ‘Combination of precipitation and grain boundary hardening’, Scr.Metall., 1973, 7, 615–619.

308. G. C. Weatherly: ‘Loss ofcoherency of growing particles by prismatic punching of dislocation loops’,Philos. Mag., 1968, 17, 791–799.

309. J.-S. Wang, M. D.Mulholland, G. B. Olson and D. N. Seidman: ‘Prediction of the yield strength ofa secondary-hardening steel’, Acta Mater., 2013, 61, 4939–4952.

310. N. Kamikawa, K. Sato, G.Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki and T. Furuhara: ‘Stress strainbehavior of ferrite and bainite with nano-precipitation in low carbon steels’,Acta Mater., 2015, 83, 383–396.

311. A. G. Kostryzhev, O. O.Marenych, C. R. Killmore and E. V. Pereloma: ‘Strengthening mechanisms inthermomechanically processed NbTi-microalloyed steel’, Metall. Mater. Trans. A,2015, 46A, 3470–3480.

312. W. Barr and C. F. Tipper:‘Brittle fracture in mild steel plates’, J. Iron Steel Inst., 1947, 157, 223238.

313. M. Militzer:‘Thermomechanical processed steels’, in ‘Comprehensive materials processing,Vol. 1, Conventional and specialized materials’, (ed. S. Hashmi), 191–216;2014, Oxford, Elsevier.

314. https://en.wikipedia.org/wiki/Liberty_ship.

315. N. J. Petch: ‘Thefracture of metals’, Prog. Met. Phys., 1954, 5, 1–52.

316. N. J. Petch: ‘Theductile-cleavage transition in alpha iron’, in Proc. Swampscott Conf. on‘Fracture’, (ed. B. L. Averback et al.), 54–64; 1959, New York, Wiley.

317. C. J. McMahon and M.Cohen: ‘Initiation of cleavage in polycrystalline iron’, Acta Metall., 1965,13, 591–604.

318. B. Mintz, W. B. Morrisonand R. C. Cochrane: ‘Influence of gain boundary carbide thickness and grainsize on the impact

319. B. Mintz, W. B. Morrisonand A. Jones: ‘Influence of carbide thickness on impact transition temperatureof ferritic steels’, Met. Technol., 1979, 6, 252–260.

320. E. Smith: ‘The nucleationand growth of cleavage microcracks in mild steel’, in Proc. Conf. on ‘Physicalbasis of yield and fracture’, 36–46; 1966, Oxford, UK, Institute of Physics.

321. E. A. Almond, D. Timbresand J. D. Embury: Proc. 2nd Int. Conf. on ‘Fracture’, (ed. P. L. Pratt),253;1969, New York, Chapmanand Hall.

322. D. A. Curry and J. F.Knott: ‘Effects of microstructure on cleavage fracture stress in steel’, Met.Sci., 1978, 12, 511–514.

323. N. J. Petch: ‘Theinfluence of grain-boundary carbide and grainsize on the cleavage strength andimpact transition temperature of steel’, Acta Metall., 1986, 34, 1387–1393.

324. M. S. Bingley and T.Siewecki: Proc. 8th Int. Conf. on ‘Strength of metals and alloys’, (ed. P. O.Kettunen et al.), 1191–1196; 1988, Oxford, Pergamon Press.

325. M. S. Bingley: ‘Effect ofgrain size and carbide thickness on impact transition temperature of low carbonstructural steels’, Mater. Sci. Technol., 2001, 17, 700–714.

326. B. Mintz, S. Vue and J.J. Jonas: ‘Hot ductility of steels and its relationship to the problem oftransverse cracking during continuous casting’, Int. Mater. Rev., 1991, 36,187–217.

327. R. L. Robbins, O. C.Shepard and O. D. Sherby: ‘Role of crystal structure on the ductility of pureiron at elevated temperature’, JISI, 1961, 199, 175–180.

328. C. Rossard, P. Blain andA. method: ‘of simulation by torsion to determine the influence of hot rollingconditions on the structure of steel’, Rev. Me´tall., 1962, 59, 223–236.

329. R. L. Robbins, O. C.Shepard and O. D. Sherby: ‘Torsional ductility and strength of iron-carbonalloys at elevated temperature’, ASM Trans. Q., 1967, 60, 205.

330. B. Mintz and J. M.Arrowsmith: ‘Hot ductility behaviour of CMn-Mn-Al steel and its relationship tocrack propagation during straightening of continuously cast strand’, Met.Technol.,1979, 6, 24–32.

331. D. N. Crowther and B.Mintz: ‘Influence of grain size on hot ductility of plain C-Mn steels’, Met.Sci. Technol., 1986, 2, 951–955.

332. B. Mintz and J. M.Arrowsmith: ‘Influence of microalloying additions on hot ductility of steels’,in ‘Hot working and forming processes’, (ed. C. M. Sellars and G. J. Davies),99–103; 1990, London, Institute of Materials.

333. J. R. Wilcox and R. W. K.Honeycombe: ‘Influence of prior precipitation on hot ductility of C-Mn-Nb-Alsteels’, in ‘Hot working and forming processes’, (ed. C. M. Sellars and G. J. Davies),108–112; 1990, London, Institute of Materials. 334. B. Mintz and D. N.Crowther: ‘The influence of small additions of Ti on the hot ductility ofsteels’, in ‘Titanium technology in microalloyed steels’, (ed. T. N. Baker),98–114; 1997, London, Institute of Materials.

335. K. M. Banks, A. Tuling,C. Klinkenberg and B. Mintz: ‘Influence of Ti on hot ductility of Nb containingHSLA steels’, Mater. Sci.Technol., 2011, 27, 737–545.

336. A. M. El-Wazri, F.Hassani, S. Yue, E. Es-Sadiqui, L. E. Collins and K. Iqual: ‘The effect ofthermal history on the hot ductility of microalloyed steels’, ISIJ Int., 1999,39, 256–262.

337. C. Spanbury and B. Mintz:‘Influence of undercooling thermal cycle on hot ductility of C–Mn–Al–Ti andC–Mn–Al–Nb–Ti steels’, Ironmaking Steelmaking, 2005, 32, 319–324.

338. T. H. Coleman and J. R.Wilcox: ‘Transverse cracking in continuously cast HSLA slabs- influence ofcomposition’, Mater. Sci. Technol., 1985, 1, 80–83.

339. S. Roy, S. Patra, S.Neogy, A. Laik, S. K. Choudharey and D. Chakrabarti: ‘Prediction ofinhomogeneous distribution of microalloy precipitates in continuously cast highstrength low alloy steel slab’, Met. Mater. Trans. A, 2012, 43A, 1845–1860.

340. D. A. Melford: ‘Theinfluence of residual and trace elements on hot shortness and high temperatureembrittlement’, Philos. Trans., 1980, 295, 89–103.

341. D. A. Melford: ‘Influenceof antimony and arsenic on surface hot shortness in copper-containing mildsteels’, JISI, 1966, 204, 495–496.

 

唐杰民于2018年9月在黄山屯溪翻译T. N. Baker在<Ironmaaking & Steelmaking>杂志2016年3月期刊中的<Microalloyed steel>一文,水平有限,加上对金属材料的认识不足,文章中肯定有不少失误和不妥之处,请大家给与指正。


(全文完)

 

 

,

Himalaya Liv.52 HB 喜马拉雅护肝胶囊!

Himalaya Liv.52 HB 喜马拉雅护肝胶囊。绝对的明星产品
商品名称:Himalaya Liv.52 HB 喜马拉雅护肝胶囊
商品编号:ECS000174
重量:38克
Liv.52 HB   喜马拉雅乙肝护理片
Effective management of hepatitis B 有效控制乙型肝炎抗病毒作用:乙肝护理片中的天然成分通过逆转录酶抑制来抑制乙型肝炎表面抗原(HBsAg)并清除乙型肝炎病毒(HBV)。它显著降低了慢性乙型肝炎感染的总体病毒载量。此外,6个月的延长治疗在病毒清除方面提供了相对更好的结果。肝脏保护作用:乙肝护理片逆转肝细胞的氧化损伤并发挥整体保肝作用。它还使肝功能重新正常化。乙肝护理片使肝酶水平正常化并恢复肝糖原水平。

南汇东滩鸟类名录2018第二版

付恺博士的南汇东滩特色鸟类的摄影在文后 Dr. Kai Pflug’s Nanhui Dongtan distinctive bird photography followed by contest 序 Foreword 2018年11月26日发布了南汇东滩鸟类名录2018后,截止至12月31日的一个多月里,南汇东滩又有了一些新的鸟类记录。特别

weinxin
我的微信
这是我的微信扫一扫